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Abstract

Wall functions, as used in the typical high Reynolds number k-e turbulence model, can

be implemented in various ways. A least disruptive method (to the flow solver) is to directly

solve for the flow variables at the grid point next to the wall while prescribing the values of k

and e. For the centrally-differenced finite-dlfference scheme employing artificial viscosity (AV)

as a stabilizing mechanism, this methodolgy proved to be totally useless. This is because

the AV gives rise to a large error at the wall due to too steep a velocity gradient resulting

from the use of a coarse grid as required by the wall function methodology. This error can be

eliminated simply by extrapolating velocities at the wall, instead of using the physical values

of the no-slip velocities (i.e. the zero value). The applicability of the technique used in this

paper is demonstrated by solving a flow over a flat plate and comparing the results with those

of experiments. It was also observed that AV gives rise to a velocity overshoot (about 1%)

near the edge of the boundary layer. This small velocity error, however, can yield as much

as 10% error in the momentum thickness. A method which integrates the boundary layer up

to only the edge of the boundary (in stead of to oo) was proposed and demonstrated to give

better results than the standard method.
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= friction coef[iclent

= constant for Pt relation (= 0.09)
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-- constant in the log law (-- 9.0)

-- computational coordinates directions or indices

-- Jacobian of coordinates transformation

= turbulent kinetic energy

-- pressure
- _:: . :

= production rate of k

= conservative flow-variables

-- Reynolds number based on z

- Reynolds number based on momentum thickness

: velocities in z, y, z directions

: fluctuating velocities in z, y, z directions

- frictional velocity

= law of the wall coordinate

= momentum thickness

- boundary layer thickness at 99% of the freestream velocity

= dissipation rate of k

= 2nd order artificial viscosity coefficient

- 4th order artificial viscosity coefficient

- Von Karmann constant (- 0.41)

= spectral radius of Jacoblan matrix

= viscosity

= fluid density

= shear stress

= forward, backward differencing in j direction

Subscripts

i,j

l

N

t

: tensoral directions

- computational direction normal to the solid wall

= laminar quantity

-- normal component

- turbulent quantity
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10

1,2,3

O0

= tangential component

-- wall

= grid indices at wall, next to wall, etc.

= free stream value

Introduction

Over the past two decades, the k-e turbulence model has enjoyed a considerable popularity

in Computational Fluid Dynamics. The popularity is due to the fact that the model is not

too complicated to work with and also can give good solutions to many complex turbulent

flow problems of engineering interest.

There have been two main methods in using the k-e equations in the near wa_ region: One

is to solve the equations directly down to the wall; the other is to employ wall functions. The

first method has been known as the low Reynolds (LR) number method and the latter has

been called the high Reynolds (HR) number method. LR is potentially more accurate than

HR since it aims at solving the entire boundary layer, including the thin laminar sublayer. HR

skips the sublayer computation altogether and starts the calculation in the universal log-law

region.

' In a practical sense, the feature that differentiates the two methods the most is the fact

that LR requires a lot more grid points than HR in order to resolve the laminar sublayer. The

thickness of the first grid point for LR is of the order of y+-l, whereas that for HR is of the

order of y+ = 50 to 100. There are two adverse effects in using fLue grid: 1) there will be more

grid points to solve for; and 2) the time step of integration will be relatively small. The first

effect is obvious since the number of grid points is directly proportional to the grid size. The

second effect, however, is not so obvious. The time step of integration is proportional to the

Courant-Friedrichs-Lewy (CFL) number which, in turn, is proportional to the grid size. In

solving the same flow using the same CFL number, the time step is smaller for a smaller grid

size. Stability of a CFD code (even an implicit one) often depends on the criterion that its

CFL number be below a certain critical value. Even if a large CFL number (hence time step)

can be used without an adverse effect on stability, it still does not mean that the convergence

rate of an implicit scheme will increase. Some implicit schemes show peak convergence rate at

CFL numbers around 5 to 10. In general, it can be said that the use of a finer grid will hamper

the convergence rate of computation to any flow. The trouble would become more acute if one



wants to solve a time dependent problem in a time-accurate manner in which a CFL number

of order one (based on the smallest grid) must be maintained through out the flow domain.

It is generally agreed that LR is still too expensive to be used in three dimensional (even in

some two dimensional) engineering calculations.

App_ently, the industry has determined that the inherent inaccuracy of the method using

the coarse grid associated with the use of wall functions is more than compensated for by

economy and this is the reason why the wall function method will continue to be popular. It

is paradoxical and interesting, though, that Refs. 1, 2 and 3 had reported the superiority in

accuracy of HR over LR in solving many _ow problems.

The base CFD code used in this study is the NPARC code 4 . The author was charged with

the task of implementing wall-function boundary conditions to the existing LR k-_ turbulence

model s which employs Chien's Llt model e. It was found during the implementation that the •

drag coefficient of the flow over a fiat plate was an order of magnitude lower than the experi-

mental value. Natuxally, much time had been spent to find the error in the implementation.

Finally, it was found that the AV was the culprit.

The objectives of this paper are to: 1) detail how the wall function is implemented (despite

its wide usage, it is hard to find a good reference on the technique); 2) demonstrate the

mechanism by which AV causes trouble to the computation; and 3) show the methodology by

which the dif[iculty was overcome.

Wall Function

The details of the Reynolds-averaged Navier-Stokes equations and the k-e turbulence model

will not be shown here, for the sake of brevity. The form of these equations can be found in

the literature (see, e.g. , Ref. 7).

The specific detail in implementing the wall functions will depend partly on the main

algorithm used in the flow solver as well as on the algorithm of the k-_ solver. The methodology

presented here is specific to the centrally-differenced finite-difference scheme which employs

AV as the stabilizing mechanism. The general philosophy used herein, however, should be

applicable to other schemes as well.

The approach employed here is to prescribe k and _ values at the first grid point away

from the wall and to solve for the flow variables, q, directly without any prescription of the

variables. The advantage of this approach is two-fold: 1) the flow solver can still satisfy its

strong conservation law form; 2) there is no disruption of the main flow algorithm at the wall.
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The latter advantage makes the k-e code more modular. The log-law profile, and the level

of viscous drag associated with it, is imposed indirectly through the k and e values that axe

imposed and through the fictitious turbulent viscosity imposed at the wall point. This latter

point win be elaborated in detail later.

There are four major assumptions inherent in the wall function method:

1) The velocity profile satisfies the universal log-law:

--= I_(Ey+) (1)

2) the variables k and e satisfy the Prandtl-Kolmogorov relation:

G_,pk 2_, = -- (2)
E

3) Local equilibrium: this means that the production of turbulence kinetic energy is equal to

its dissipation, which can be written as

P=pe (3)

where,

p = _:_,_-- (4)

4) The mean flow is parallel to the solid wall so that the only production term which

survives is that which multiplies with UlUZ'' which is the wall shear stress itself.

It should be noted that implicit in the log-law profile assumption is also the assumption

that turbulent shear stress is constant within the region (equal to pu_) and that the turbulence

length scale is directly proportional to the the distance from the wall.

The boundary condition for e can be obtained from the local equilibrium relation:

a_
p_= ,_,;,,,-_-- (5)
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With the parallel flow assumption and the assumed Boussinesq's representation of the

turbulent shear stresses, _puluj becomes the turbulent stress term (pu_) and the derivative of

the mean flow reduces simply to _ , so that the equation can now be written as

And finally, the derivative above is obtained by differentiating the log-law profile. This

yields the relation:

3

= -- (7)
Icy

The boundary condition for k is obtained by first writing the viscous drag relation at the

first grid point away from the wall (point no. 2):

= = (8)

After substituting pu_ for r_, eq. (2) for Pt, eq. (1) for u, and eq. (7) for e, and rearranging

the resulting relation, the equation for k is obtained as

2

___ 'Us"

(9)

It should be noted that by imposing the above values of k and e, the log law profile is only

partially satisfied (through its derivative) but the local equilibrium condition is strictly

enforced.

As mention earlier, the strategy here is to not impose the log-law profile directly. Even

if one wanted to do so, it would not be a very easy task in a general curvilinear coordinate

system, the difficulty is that the choices of In addition, one may also have trouble in disrupting

the strong conservation law form of the flow equations which is crucial for a shock capturing

scheme.

So the strategy adopted in this study was to solve for the flow variables in a regular manner

as one would normally do for the case of, say, an algebraic turbulence model. But the drag

at the wall is imposed to be the drag dictated by the log-law profile. The procedure can be

summarized as follows:
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1. At any iteration step, solve for the velocity u, v, w as in the standard viscous method,

with no-slip velocities applied at the wall.

2. From the values of the three velocities u, v and w, find the tangential velocity to the (in

general, curved) wall.

3. Assume that this tangential velocity satisfies the log-law expression exactly and back out

the value of tt_ from the log-law relation. In this study, the Newton's iteration was used to

find u_ from the log-law relation.

4. This value of u_ (which is wrong if the flow does not yet reach a convergence) is used to

fix the value of pt at the wall such that the total shear stress at the wall (laminar plus

turbulent) is equal to pu_

5. Proceed to the next iteration step.

Step 4 needs to be elaborated further. After u_ is obtained from the Newton's iteration, the

following relation should be satisfied:

0UT (10)

Where, subscripts 1 and 2 denote the grid points at and next to the wall. This is nothing

but the centrally-differenced viscous stress relation using the turbulent viscosity at the

half-point. Note that the velocity derivative is evaluated by using the tangential velocity ur

and the normal distance yN

The above equation can be used to solve for ft,_ since it is the only unknown in the equation.

The derivative in the above equation needs to be scrutinized further. A careful examination

revealed that this should be the finite-difference derivative (not the analytical derivative) and

that the formula of the derivative must be the same as that used in the flow solver. With

that, the value of p,_ is obtained as

2yNpu_
P,, - (P,t + g,_ +/%) (11)

UT

This value of Pn will give the right value of the viscous drag at the wall without the

programmer having to interfere with the logic of the algorithm of the flow solver. It was
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found that the value of p_ can become negative. But this is permissible since the average

value of the viscosity is positive and the drag is the fight physical drag. For other types of

algorithms, eq. (9) should be changed to be the same as the viscous stress formula of the flow

solver.

Description of the Test Case

Since the code used in this investigation was designed primely for compressible flow

problems, it was determined that a Mach 0.2 flow over a fiat plate should be appropriate for

the first test case because the solution can still converge reasonably fast while compressibility

effect on turbulence should be negligible. The model must be able to solve this most simple

case first before it will have any chance of solving other complex flows.

The domain of computation was a fiat plate 50 cm. long and 2.5 cm wide. The upper

boundary was 2.5 cm. above the plate. The grid employed was 31x31x5, uniformly spaced

in the streamwise (z) and spanwise (z) directions. The five computational planes in the z-

direction were used merely to expedite the two-dimenslonal flow since the CFD code was a

three-dimensional one. In the normal (y) direction, the first grid point was placed at 0.0417

cm. away from the wall. The third grid point was 0.02085 cm. away from the second grid

point. Thereafter, the grid expanded at the rate of 10% per grid point as it moved away from

the wall. A convenient rule of thumb for determining the location of the first grid point is to

place the point at 10% of the momentum thickness which is defined ass

52 0.036Re_O.2 (12)

This win almost gaurantee that the grid point falls within the log-law region.

Boundary Conditions

For the flow equations, characteristic boundary conditions were imposed at the inflow and

outflow boundaries (BC number 0 in the NPARC code). The total pressure and total temper-

ature at inflow were set at 104192.5 Pascals and 302.4 °K, respectively. These conditions were

derived from the static conditions of the Mach 0.2 flow at 101325 Pascals static pressure and

300 °K static temperature. The static pressure at the outflow boundary was set at 101325

Pascals.
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In the spanwisedirection, symmetric boundary conditions (BC number 50) were imposed

to simulate two-dimenslonal flow. The conditions at the wall were the standard no-slip,

adiabatic conditions (BC number 60). An extrapolation condition (BC number 3) was used

for the upper boundary in order to allow the developing boundary layer to push the fluid out

in a natural manner.

For the h-e equations, the equations are purely hyperbolic in nature and the inflow condi-

tions was thus fixed. The value of h was fixed at 1% of the free stream kinetic energy. The

value of #t was assumed to be uniform at five times the laminar viscosity value. These are

adhoc assumptions which could be evaluated to see if they have any effects on the solution

when the turbulence intensity and viscosity takes on other assumed values. With k and/_t

fixed, the value of e at inflow can be obtained from the Prandtl-Kolmogorov relation:

#t----- pC'_,-- (13)
_5

At the outflow and upper boundaries, extrapolation conditions were used. At the solid

wall, the wall function conditions as described in the previous section were used.

Results and Discussion

With all the above mentioned implementation strategies, the flat plate test case was run

using the NPAltC code. The drag coefficient obtained from the results is compared with the

experimental data of Klebano/t _ in figure 1. It can be seen that the computational results

differ from the experimental data by an order of magnitude. The velocity profile at the trailing

edge of the plate reflects this erratic result, as can be seen in figure 2, which is the comparison

of the computational results with the experimental data of Weighardt 1°. Much time was spent

in finding the source of the error that caused these inaccurate results until finally the source

was identified to be the AV terms. It should be noted that the k-e solver contains no AV

terms since it is based on an upwind TVD scheme. 11,12

A proof that the error was caused by AV can be seen by progressively reducing the value

of the fourth order AV coefficient (e4) from the default value of 0.64 to 0.0001. The results of

these numerical experiments are shown in figures 3 and 4. Note that in this particular flow,

the second order AV is not active because the pressure variation is too low, resulting in the

pressure switch of the second-order AV being turned of_ all the time. It can be seen from the

figures that at e4 = 0.0001, the drag coefficient and the velocity profile from the computation
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compare very well with those of the experiment. It is surprising that the code still remained

stable at this extremely low value of the AV coeffident. It is believed that this was so because

this was a very simple flow over a fiat plate. Experience in more complex flows had shown

that by reducing _4 to only 0.1 (from 0.64), code failure can occur.

Obviously, the practice of varying the AV coefficients to get a good solution match with

experimenta/data is not a good practice. It is higtg/y desirable that a method be found to get

a good solution while still using the default, theoretically-determined AV coefficients.

The AV terms used in NPARC code were based upon the modal introduced by Jameson,

et a113. The terms for the j computational coordinate can be written as

D - V_(Aj(e2Aj - e4AjVjAj))(Jq) (14)

Terms for the i and k coordinates can be written by simply changing the index j to i and k,

respectively. The coefficients ez and e4 axe defined as

ez = _:_Sp (15)

_4 = Mar(O, n4 - _2) (16)

where s2 and _4 are numerical constants,hitheretoreferredto as AV coefficients.Their values

should not exceed 0.25 and 0.64,respectively(actually,0.64 isthe value used in NPARC which

is further scaled down to about 1/16). 5n is calledpressure switch which turns the second

order AV on only when there axe strong pressure fluctuations.The term isdefined as

sn= [pj+,- zpj+ pj_,I (iz)
P#+x -k 2p$ -F P$-I

By considering the AV formula, itcan be seen that when j equals to two (i.e.,the point

next to the wall) the AV formula involvesderivativesof the flow variablesat the wall as well

as those beyond the wall which are fictitiousgrid points (sincethey do not reallyexist).In

particlur,u2 - ul takes on an unrealisticallylarge value. This happens because the second

grid point is too fax away from the wall, as required by the wall function. If the near wall grid

is fine enough, as in the low Reynolds number turbulence modal case, then there should be

no problem and the AV model should need no modifications. This unrealistically laxge value
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of u_ - ul adds error to the computation through the AV terms. One strategy to get around

this is to get the derivative value at and beyond the wall points by extrapolation from the

interior points as follows:

also,

U s _ U 1 = U 3 -- U 2 (18)

U 1 -- U_ 1 = U s -- U 2 (19)

where the subscript-I refersto the fictitiouspoint beyond the wall. This means that the

second order AV terms vanish at the wall and that the fourth order AV terms reduce to:

D4 =  4(u4- 2u3 + u2) (20)

which can be seen as equivalent to the second order AV term centering at point number 3

(but with _4 as the coefficient).Note also that the subscript4 on D and _ are coincidental

and does not represent the grid point number four.

With the above modifications of the AV terms and the AV coefficient, _4, sets at the default

value (0.64), NPARC now produces good drag coefficients and velocity profiles, as can be seen

in figures 5 and 6. Unlike the results shown in figure 3, the Cj, distribution here shows no

streamwise oscillations, due to the larger AV coefficient being used. Cross-stream proses of

k , e and #t at the trailing edge are plotted in figures 7 ,8 and 9, respectivdy. Klso shown

in these figures are their counterparts obtained by using the original AV model It is seen in

the figures that k and e of the modified AV method behave as expected in that k remains

more or less constant in the near wall region (due to local equilibrium) before dropping off

further away from the wan, while e drops off immediately as it moves away from the wall. The

k and e of the original AV modal, on the other hand, exhibit non-physical, very high peaks

near the wall. Contours of _ are shown in figure 10. There are as many contour levels in the

original AV case (figure 10.a) as in the modified AV case (figure 10.b) but the contour values

of the former is ten times larger than those of the latter. It can be seen that the original

AV model gives a much thicker boundary layer than the modified AV model. For the sake of
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demonstration, velocity vectors of the last five streamwise stations are shown in figure 11. It

should be noted that there are only 15 grid points in the entire boundary layer. This should

be compared to 50 or more grid points needed if the low Reynolds number model were used.

It is the opinion of the author that this kind of error due to AV is not unique to central

difference schemes. Upwind schemes would probably exhibit a similar error insofar as upwind

schemes can be interpreted as central difference schemes plus some extra AV terms. If these

extra AV terms involve derivatives of conservative variables at the wall then it is to be expected

that the upwind schemes would sufl'er a similar type of error as explained above for the central

difference scheme.

Another minor effect of A¥ on solution quality was found by inspecting the velocity pro_e

near the edge of the boundary layer. There appeared to be a velocity overshoot (over that

of the free stream) of the order of 1%. This overshoot extended over a distance of about

one boundary layer thickness before gradually dropping off to the free stream value. This

overshoot would be very hard to notice in a casual observation. In fact, the overshoot would

be barely noticeable in a normal-scale plotting. Figure 12 shows the velocity overshoot near

the edge of boundary layer as compared to the case run with the same modified AV model but

using _4=0.0001. It can be seen clearly that the overshoot was caused by the high (regular)

value of the AV coe_cient. Unfortunately, the low values of the AV coefficients cannot always

be used in flows more complex than the flow over a flat plate.

Upon further investigation, it was found that this small velocity overshoot can cause up

to 10% error in the Ree (hence Cf) calculation. Re_ is the Reynolds number based on the

momentum thickness which is defined by the following formula:

= (I/p®,,k) - (21)

Note that the upper integration limit for y is ov which means the integration must go

through the velocity overshoot region; this is the source of error mentioned above. At any

streamwise station, the overshoot will render 52 (hence Ree) to be smaller than it should be.

An adhoc remedy was used in this investigation wherein the upper limit of the integration

was taken at y -- 599 (method 1) instead of integrating to co (method 2). The results of using

methods 1 and 2 in computing C! as a function of Ree are plotted in figure 13 where it can be

seen that method 2 yields a lower value of C! than method 1 which is already slightly lower

than the experimental value.
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Figure 14 shows Ree using the two methods of integration versus Re=. As can be seen,

method 2 gives about a 10% smaller value of Ree. It would be interesting to see if upwind

schemes would give this same overshoot when using a coarse grid as was used in this study.

Conclusion

The study has revealed that artificial viscosity (AV) terms can induce a very large er-

ror in the drag coefficient value and the shape of velocity profiles of a turbulent flow when

turbulence is simulated by the k-e equations in conjunction with the wall-function boundary

conditions. The study has demonstrated that this kind of error can be circumvented simply

by extrapolating the velocity profiles from the interior points toward the boundary points and

using these extrapolated values in the AV formula while still retaining the no-slip boundary

conditions in the flow solver as usual.

The AV terms were also found to cause a small (about 1%) velocity overshoot near the

boundary layer edge. This small error, however, can cause a fairly large error (about 10%) in

momentum thickness. This type of error can be reduced by integrating the boundary layer

only up to 699, and not to oo.
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